SWI/SNF Infobase—An exclusive information portal for SWI/SNF remodeling complex subunits
نویسندگان
چکیده
Chromatin remodeling complexes facilitate the access of condensed genomic DNA during transcription, replication, and repair, by altering the histone-DNA contacts in the nucleosome structures. SWI/SNF (SWItch/Sucrose Non-Fermentable) family of ATP dependent chromatin remodeling complexes have been documented for their tumour suppressor function. Recent studies have reported the high frequency of cancer causing mutations in this protein family. There exist multiple subunits for this complex and can form context-dependent sub-complexes. The cataloguing of individual subunits of this complex is essential for understanding their specific functions and their mechanism of action during chromatin remodeling. This would also facilitate further studies to characterize cancer causing mutations in SWI/SNF subunits. In the current study, a database containing information on the subunits of SWI/SNF-α (BRG1/BRM-Associated Factors (BAF)) and SWI/SNF-β (Polybromo-Associated BAF (PBAF)) sub classes of SWI/SNF family has been curated and catalogued. The database hosts information on 27 distinct SWI/SNF subunits from 20 organisms spanning a wide evolutionary range of eukaryotes. A non-redundant set of 522 genes coding for SWI/SNF subunits have been documented in the database. A detailed annotation on each subunit, including basic protein/gene information, protein sequence, functional domains, homologs and missense mutations of human proteins have been provided with a user-friendly graphical interface. The SWI/SNF Infobase presented here, would be a first of its kind exclusive information portal on SWI/SNF complex subunits and would be a valuable resource for the research community working on chromatin remodeling. The database is available at http://scbt.sastra.edu/swisnfdb/index.php.
منابع مشابه
The Spectrum of SWI/SNF Mutations, Ubiquitous in Human Cancers
SWI/SNF is a multi-subunit chromatin remodeling complex that uses the energy of ATP hydrolysis to reposition nucleosomes, thereby modulating gene expression. Accumulating evidence suggests that SWI/SNF functions as a tumor suppressor in some cancers. However, the spectrum of SWI/SNF mutations across human cancers has not been systematically investigated. Here, we mined whole-exome sequencing da...
متن کاملGenome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes
Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemicall...
متن کاملEvidence that Swi/Snf directly represses transcription in S. cerevisiae.
Many studies have established that the Swi/Snf family of chromatin-remodeling complexes activate transcription. Recent reports have suggested the possibility that these complexes can also repress transcription. We now present chromatin immunoprecipitation evidence that the Swi/Snf complex of Saccharomyces cerevisiae directly represses transcription of the SER3 gene. Consistent with its role in ...
متن کاملFunctional and Structural Dissection of the SWI/SNF Chromatin Remodeling Complex: A Dissertation
The yeast SWI/SNF complex is the prototype of a subfamily of ATP-dependent chromatin remodeling complexes. It consists of eleven stoichiometric subunits including Swi2p/Snf2p, Swi1p, Snf5p, Swi3p, Swp82p, Swp73p, Arp7p, Arp9p, Snf6p, Snf11p, and Swp29p, with a molecular weight of 1.14 mega Daltons. Swi2p/Snf2p, the catalytic subunit of SWI/SNF, is evolutionally conserved from yeast to human cel...
متن کاملSubunits of the yeast SWI/SNF complex are members of the actin-related protein (ARP) family.
The yeast SWI/SNF chromatin remodeling complex is comprised of 11 tightly associated polypeptides (SWI1, SWI2, SWI3, SNF5, SNF6, SNF11, SWP82, SWP73, SWP59, SWP61, and SWP29). We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry to identify the genes that encode the SWP59 and SWP61 subunits. Surprisingly, we find that SWP59 and SWP61 are encoded by the ARP9 ...
متن کامل